Sunday, 25 September 2016

Grassy Butterfly Dreams

Figure 1. Structure of the 'Butterfly' Compound.

I have always been interested in the field of Organic Electronics, and it is indeed a research field I would love to be involved in! To me, organic compounds are not merely about biological stuff. It is often the optical and electronic – optoelectronic – properties of the organic compounds that make them useful contenders as novel functional and electronic materials. Too often, it is through an understanding of the chemistry that we can fine-tune the chemical properties of the target compound in question, and lead to better functional materials for the future. I have recently read a paper about an organic material, and it is exactly bearing the above philosophy in mind. [1]

The compound has a potential as novel organic light-emitting diode (OLED) material (Figure 1). The compound can display the property of thermally activated delayed fluorescence (TADF), and for a good candidate in this field, the compound should  (a) have a small energy gap between the lowest singlet and triplet states; (b) a high intrinsic photoluminescence quantum yield (through orbital overlap) and (c) a relatively short delayed lifetime. From the data, the compound seems to do pretty great for all 3 requirements. Thus, this compound has a nice potential to serve as a green fluorescent OLED.

The shape and design of the green-colored compound are interesting. It resembles te shape of a butterfly, because the overall structure is a donor- π system-acceptor- π system-donor type (D-π-A-π-D). The donor group is phenoxazine (PXZ), while the acceptor group is a pyrimidine derivative.  

Figure 2. Buchwald-Hartwig Coupling approach towards the family of target compounds.
The synthesis of the compound was through a double Pd-catalyzed Buchwald-Hartwig amination of the phenoxazine nucelophile to a di-bromophenyl pyrimidine derivative (Figure 2). An X-ray crystal structure could also be obtained, and the molecular structure really resembled a butterfly! It is notable that the twisting angle between the PXZ and the phenyl ring is large, very much due to the steric hindrance provided from the PXZ component. This design is important because by the incorporation of a larger steric demand, it can lead to a spatial separation of the frontier molecular orbitals, lowering the singlet-triplet energy gap as a result (Criterion a).

Cyclic voltammograms have been obtained to probe the HOMO / LUMO energy levels of the butterfly compound. The absorption spectra of the compound provides nice insights into the electronic characters of the compound. An intense band with charge-transfer character signifies the transition from the electron-donating PXZ group to the electron-withdrawing pyrimidine unit. It is also noted that the absorption profiles overlap with that of a commonly used host material, CBP, meaning that in a doping system, effective energy transfer from CBP to this butterfly compound will be possible.

At the pyrimidine unit, there is a substituent at the 2-position, and this substituent can impact the property of the green-colored compound. It is found that the delayed fluorescence (DF) can be reduced by a bulkier 2-substituted group. This can suppress the non-radioactive decay and also other undesirable quenching processes due to triplet excitons, thus improving the performance at high luminance. 

After playing with the chemical aspects, the researchers then tested the novel compounds’ potential as TADFs in OLED devices. All the compounds lead to green light emission in the systems, possess good thermal stability, demonstrate very effective up-conversion (T1 > S1), achieve high intrinsic photoluminescence quantum yield, and perform well at high luminance conditions. The results are promising for the compounds involved.

Impressive work!

by Ed Law
26/9/2016

Reference:

1. Optimizing Optoelectronic Properties of Pyrimidine-Based TADF Emitters by Changing the Substituent for Organic Light-Emitting Diodes with External Quantum Efficiency Close to 25% and Slow Efficiency Roll-Off

Kailong Wu, Tao Zhang, Lisi Zhan, Cheng Zhong, Shaolong Gong, Nan Jiang, Zheng-Hong Lu, and Chuluo Yang, Chem. Eur. J. 2016, 22, 1 – 8.
DOI: 10.1002/chem.201601686